
ABSTRACT
As the world emerges from the pandemic caused by SARS-CoV-2, there is a need
to understand factors that determine the effects of COVID-19, as well as the
diagnostic features that may be used to predict the occurrence of severe cases and
mortality. Patients with severe COVID-19 are often afflicted with neurologic
symptoms, and individuals with a pre-existing neurodegenerative disease have an
increased risk of severe COVID-19 [1–4]. We conducted a study to determine the
relationship between the lethality of COVID-19 and CNS-related symptoms. The
electronic health records of 471 patients with severe COVID were analyzed to
automatically identify the clinical characteristics predictive of COVID-19 mortality.
The feature discovery was conducted by a regularized logistic regression classifier
with an embedded feature selection capability [5]. The initial selection followed by
SHAP analysis revealed that a small ensemble of readily observable clinical
features, notably including characteristics associated with cognitive impairment,
could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as
the area under the ROC curve of the classifier). These findings have important
implications for the prioritization of clinical measures used to identify patients with
COVID-19 (and, potentially, other forms of acute respiratory distress syndrome)
having an elevated risk of mortality.

Females Males
Race Alive Alive Per. Died Died % Total Alive Alive % Died Died %. Total
Asian 3 100.0% 0 0.0% 3 5 83.3% 1 16.7% 6
Black or Afr. Amer. 123 87.9% 17 12.1% 140 85 80.2% 21 19.8% 106
Refused to identify 1 33.3% 2 66.7% 3 2 100.0% 0 0.0% 2
Unknown 10 100.0% 0 0.0% 10 5 100.0% 0 0.0% 5
White 77 86.5% 12 13.5% 89 88 82.2% 19 17.8% 107
Total 214 87.3% 31 12.70% 245 185 81.9% 41 18.1% 226
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MACHINE-LEARNING MODEL
• Set of relevant diagnostic features established by implementing an ante-hoc
explainable, predictable statistical model with embedded feature selection
capability.

• We utilized a logistic regression model regularized with a ridge (ℓ2), LASSO (ℓ1),
or a combination of both penalties (elastic net) [5–7].

• This approach allowed: (1) creation of a simple model capturing all significant
sources of variability, incorporating all diverse clinical descriptors/features; and (2)
performance of simultaneous feature selection and feature ranking, enabling
identification of the major drivers of correct prediction [8].

DATA INPUT
• The data represent 471 patients admitted to the ICU at IU Health Methodist
Hospital and Sydney & Lois Eskenazi Hospital (Indianapolis, IN) with severe
SARS-CoV-2 infection.

• 399 patients were eventually discharged, and 72 died (see Table below).
• 196 patients identified as white, and 246 as Black or African American.
• 245 of the patients were females, and 226 were males.
• No significant difference in age between the African-American and white patients.
• Hispanic/Latino patients were significantly younger than other patients.

where λ is the tuning hyperparameter controlling the overall strength of the LASSO
and ridge penalties and α controls the balance between them.

FEATURE SELECTION
• Minor adjustments in the model's random initialization or
train-test split led to variances in the selected feature set
for the embedded feature selection methods due to the
known problem of selection instability.

• Investigating an ensemble of independent models, each
of which was initiated with a different random seed,
resolved this issue.
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Local feature importance
• We analyzed the local importance (i.e., judged for each patient) of each feature.
• SHapley Additive exPlanation (SHAP) values can determine the importance of a
feature and its directionality influence by comparing what a model predicts with
and without that feature for each observation in the training data by calculating the
marginal contribution [9].

• Based on game theory, the SHAP values illustrate how vital each player (i.e.,
classification feature) is to the overall cooperation and what payoff (i.e.,
classification accuracy) the player can expect from participation in the game [10].

FEATURE IMPORTANCE
Global feature importance
• ENET regularization penalizes the size of the
coefficients, sets some irrelevant values to 0, and
minimizes the impact of irrelevant features.

• Feature importance can be expressed by the absolute
values of the non-zero coefficients of the covariates.

Ventilator RR (Low, min)
Pupil size (Left, min)

Edema laterality RG (Bilateral)
Pupil size (Right, max)
Pupil size (Right, min)
Pupil size (Left, max)

Intubated prior to admission
Progressive mobility level

Braden score (Nutrition, min)
Delirium (Unable to assess

PICC number of lumens
Edema assessment RG

Characteristics of speech (Unable to assess)
Braden score (Nutrition, max)

Characteristics of speech (Clear)
Age

Urine count (min)
Braden score (Moisture)

Awake and alert, able to respond
Urine count (max)

0.0 0.2 0.4

Importance

brajwa@purdue.edu jrochet@purdue.edu

CNS-related neuropsychiatric features include
• Inability to assess the patient's speech, possibly caused by sedation, loss of
consciousness, or delirium. Delirium has been described as one of the most
common neuropsychiatric manifestations of severe COVID-19 [3,4,11–13].

• Unclear/slurred speech. Nonsensical speech, confusion, and disorientation are
described as initial neurological symptoms of severe COVID-19 [2,14,15].

• Inability to assess delirium feature communicates that a patient was unable to be
subjected to the Confusion Evaluation Method [16].

• Awake and able to respond feature demonstrates that a patient is awake,
responding appropriately, and aware of self, place, and time.
Patient well-being and frailty features
• The urine voiding count feature is connected with the lower urinary tract
symptoms known to be associated with COVID-19 [17,18].

• The majority of COVID-19 patients may experience urinary incontinence,
increased urination frequency, nocturia, and urgency during the infection,
perhaps caused indirectly by COVID-19-related general dysfunction in the
autonomic nervous system [16,19].

• Braden score, created to identify early pressure sore-prone patients, contains six
subscales measuring sensory perception, skin wetness, activity, mobility, friction
and shear, and nutrition [20]. It describes the overall condition of the patient.

RESULTS
Besides age, the feature selection pipeline identified several clinical
descriptors that can be divided into two categories: CNS-related and frailty-
related features:
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